
3RD EDITION

 WILLIAM RICHARD

 PUNCH • ENBODY

THE PRACTICE OF COMPUTING USING

book PH02031-Punch February 3, 2016 14:59

T H E P R A C T I C E O F C O M P U T I N G U S I N G

PYTHON

Boston Columbus Indianapolis New York San Francisco Hoboken
Amsterdam Cape Town Dubai London Madrid Milan Munich Paris Montréal Toronto

Delhi Mexico City Sa~o Paulo Sydney Hong Kong Seoul Singapore Taipei Tokyo

T H I R D
E D I T I O N

William Punch

Richard Enbody

book PH02031-Punch February 3, 2016 14:59

Vice President, Editorial Director, ECS: Marcia Horton
Acquisitions Editor: Matt Goldstein
Editorial Assistant: Kristy Alaura
Vice President of Marketing: Christy Lesko
Director of Field Marketing: Tim Galligan
Product Marketing Manager: Bram Van Kempen
Field Marketing Manager: Demetrius Hall
Marketing Assistant: Jon Bryant
Director of Product Management: Erin Gregg
Team Lead, Program and Project

Management: Scott Disanno
Program Manager: Carole Snyder

Senior Specialist, Program Planning and
Support: Maura Zaldivar-Garcia

Cover Designer: Joyce Wells
Manager, Rights and Permissions: Rachel Youdelman
Project Manager, Rights and Permissions: William Opaluch
Inventory Manager: Meredith Maresca
Media Project Manager: Dario Wong
Full-Service Project Management: Jogender Taneja,

iEnerziger Aptara®, Ltd.
Composition: iEnerziger Aptara®, Ltd.
Printer/Binder: Edwards Brothers Malloy, Inc.
Cover and Insert Printer: Phoenix Color

Credits and acknowledgments borrowed from other sources and reproduced, with permission, in this textbook appear on appropriate page
within text. Reprinted with permission.

microsoft and/or its respective suppliers make no representations about the suitability of the information contained in the
documents and related graphics published as part of the services for any purpose. all such documents and related graphics
are provided “as is” without warranty of any kind. microsoft and/or its respective suppliers hereby disclaim all warranties
and conditions with regard to this information, including all warranties and conditions of merchantability. whether
express, implied or statutory, fitness for a particular. purpose, title and non-infringement. in no event shall microsoft
and/or its respective suppliers be liable for any special, indirect or consequential damages or any damages whatsoever
resulting from loss of use, data or profits, whether in an action of contract. negligence or other tortious action, arising
out of or in connection with the use or performance of information available from the services.

the documents and related graphics contained herein could include technical inaccuracies or typographical errors
changes are periodically added to the information herein. microsoft and/or its respective suppliers may make improvements
and/or changes in the product(s) and/or the program(s) described herein at any time partial screen shots may be viewed in
full within the software version specified.

microsoft® windows®, and microsoft office® are registered trademarks of the microsoft corporation in the u.s.a and other
countries. this book is not sponsored or endorsed by or affiliated with the microsoft corporation.

Cover Photo Credit: Unorobus/Fotolia, Ifong/123RF, Deposit Photos/Glow Images, Onot/Shutterstock, Nataliia Natykach/123RF,
Vitezslav Valka/123RF

The programs and applications presented in this book have been included for their instructional value. They have been tested with care but
are not guaranteed for any particular purpose. The publisher does not ofer any warranty or representation, nor does it accept any liabilities
with respect to the programs or applications.

Copyright © 2017, 2013, 2011 Pearson Education, Inc. All rights reserved. Printed in the United States of America. This publication is
protected by Copyright, and permission should be obtained from the publisher prior to any prohibited reproduction, storage in a retrieval
system, or transmission in any form or by any means, electronic, mechanical, photocopying, recording, or likewise. For information
regarding permissions, request forms and the appropriate contacts within the Pearson Education Global Rights & Permissions department,
please visit www.pearsonhighed.com/permissions/.

Many of the designations by manufacturers and sellers to distinguish their products are claimed as trademarks. Where those designations
appear in this book, and the publisher was aware of a trademark claim, the designations have been printed in initial caps or all caps.

Library of Congress Cataloging-in-Publication Data available upon request.

Names: Punch, W. F. (William F.), author. | Enbody, Richard J., author.
Title: The practice of computing using Python / W.F. Punch and R.J. Enbody,

Department of Computer Science and Engineering, Michigan State University.
Description: 3rd edition. | Boston : Pearson, 2016. | Includes

bibliographical references and index.
Identifiers: LCCN 2015050451| ISBN 9780134379760 | ISBN 0134379764
Subjects: LCSH: Python (Computer program language) | Computer programming.
Classification: LCC QA76.73.P98 P92 2016 | DDC 005/13/3–dc23 LC record available at

http://lccn.loc.gov/2015050451

10 9 8 7 6 5 4 3 2 1

ISBN 10: 0-13-437976-4
ISBN 13: 978-0-13-437976-0

http://www.pearsonhighed.com/permissions
http://lccn.loc.gov/2015050451

book PH02031-Punch February 3, 2016 14:59

To our beautiful wives Laurie and Wendy and our kids Zach, Alex,

Abby, Carina, and Erik,

and our parents.

We love you and couldn’t have done this

without your love and support.

book PH02031-Punch February 3, 2016 14:59

This page intentionally left blank

book PH02031-Punch February 3, 2016 14:59

•B R I E F
C O N T E N T S

V I D E O N O T E S x x i v
P R E FA C E x x v
P R E FA C E T O T H E S E C O N D E D I T I O N x x i x

P A R T 1 T H I N K I N G A B O U T C O M P U T I N G 1

Chapter 0 The Study of Computer Science 3

P A R T 2 S TA RT I N G T O P R O G R A M 3 5

Chapter 1 Beginnings 37

Chapter 2 Control 87

Chapter 3 Algorithms and Program Development 161

P A R T 3 D ATA S T R U C T U R E S A N D F U N C T I O N S 1 8 7

Chapter 4 Working with Strings 189

Chapter 5 Functions—QuickStart 245

Chapter 6 Files and Exceptions I 271

Chapter 7 Lists and Tuples 311

Chapter 8 More on Functions 395

Chapter 9 Dictionaries and Sets 423

Chapter 10 More Program Development 483

P A R T 4 C L A S S E S , M A K I N G Y O U R O W N D ATA S T R U C T U R E S

A N D A L G O R I T H M S 5 2 7

Chapter 11 Introduction to Classes 529

Chapter 12 More on Classes 571

Chapter 13 Program Development with Classes 615

v

book PH02031-Punch February 3, 2016 14:59

vi B R I E F C O N T E N T S

P A R T 5 B E I N G A B E T T E R P R O G R A M M E R 6 4 3

Chapter 14 Files and Exceptions II 645

Chapter 15 Recursion: Another Control Mechanism 687

Chapter 16 Other Fun Stuf with Python 709

Chapter 17 The End, or Perhaps the Beginning 751

A P P E N D I C E S 7 5 3

Appendix A Getting and Using Python 753

Appendix B Simple Drawing with Turtle Graphics 773

Appendix C What’s Wrong with My Code? 785

Appendix D Pylab: A Plotting and Numeric Tool 817

Appendix E Quick Introduction to Web-based User Interfaces 829

Appendix F Table of UTF-8 One Byte Encodings 859

Appendix G Precedence 861

Appendix H Naming Conventions 863

Appendix I Check Yourself Solutions 867

I N D E X 8 7 3

book PH02031-Punch February 3, 2016 14:59

•C O N T E N T S

V I D E O N O T E S x x i v
P R E FA C E x x v
P R E FA C E T O T H E S E C O N D E D I T I O N x x i x

1.0.1 Data Manipulation xxx

1.0.2 Problem Solving and Case Studies xxx

1.0.3 Code Examples xxx

1.0.4 Interactive Sessions xxxi

1.0.5 Exercises and Programming Projects xxxi

1.0.6 Self-Test Exercises xxxi

1.0.7 Programming Tips xxxi

P A R T 1 T H I N K I N G A B O U T C O M P U T I N G 1

Chapter 0 The Study of Computer Science 3

0.1 Why Computer Science? 3

0.1.1 Importance of Computer Science 3

0.1.2 Computer Science Around You 4

0.1.3 Computer “Science” 4

0.1.4 Computer Science Through Computer Programming 6

0.2 The Difculty and Promise of Programming 6

0.2.1 Difculty 1: Two Things at Once 6

0.2.2 Difculty 2: What Is a Good Program? 9

0.2.3 The Promise of a Computer Program 10

0.3 Choosing a Computer Language 11

0.3.1 Diferent Computer Languages 11

0.3.2 Why Python? 11

0.3.3 Is Python the Best Language? 13

0.4 What Is Computation? 13

0.5 What Is a Computer? 13

vii

book PH02031-Punch February 3, 2016 14:59

viii C O N T E N T S

0.5.1 Computation in Nature 14

0.5.2 The Human Computer 17

0.6 The Modern, Electronic Computer 18

0.6.1 It’s the Switch! 18

0.6.2 The Transistor 19

0.7 A High-Level Look at a Modern Computer 24

0.8 Representing Data 26

0.8.1 Binary Data 26

0.8.2 Working with Binary 27

0.8.3 Limits 28

0.8.4 Representing Letters 29

0.8.5 Representing Other Data 30

0.8.6 What Does a Number Represent? 31

0.8.7 How to Talk About Quantities of Data 32

0.8.8 How Much Data Is That? 32

0.9 Overview of Coming Chapters 34

P A R T 2 S TA RT I N G T O P R O G R A M 3 5

Chapter 1 Beginnings 37

1.1 Practice, Practice, Practice 37

1.2 QuickStart, the Circumference Program 38

1.2.1 Examining the Code 40

1.3 An Interactive Session 42

1.4 Parts of a Program 43

1.4.1 Modules 43

1.4.2 Statements and Expressions 43

1.4.3 Whitespace 45

1.4.4 Comments 46

1.4.5 Special Python Elements: Tokens 46

1.4.6 Naming Objects 48

1.4.7 Recommendations on Naming 49

1.5 Variables 49

1.5.1 Variable Creation and Assignment 50

1.6 Objects and Types 53

1.6.1 Numbers 55

1.6.2 Other Built-In Types 57

1.6.3 Object Types: Not Variable Types 58

1.6.4 Constructing New Values 60

book PH02031-Punch February 3, 2016 14:59

C O N T E N T S ix

1.7 Operators 61

1.7.1 Integer Operators 61

1.7.2 Floating-Point Operators 64

1.7.3 Mixed Operations 64

1.7.4 Order of Operations and Parentheses 65

1.7.5 Augmented Assignment Operators: A Shortcut! 66

1.8 Your First Module, Math 68

1.9 Developing an Algorithm 69

1.9.1 New Rule—Testing 73

1.10 Visual Vignette: Turtle Graphics 74

1.11 What’s Wrong with My Code? 75

Chapter 2 Control 87

2.1 QuickStart Control 87

2.1.1 Selection 87

2.1.2 Booleans for Decisions 89

2.1.3 The if Statement 89

2.1.4 Example: What Lead Is Safe in Basketball? 92

2.1.5 Repetition 96

2.1.6 Example: Finding Perfect Numbers 100

2.1.7 Example: Classifying Numbers 105

2.2 In-Depth Control 109

2.2.1 True and False: Booleans 109

2.2.2 Boolean Variables 110

2.2.3 Relational Operators 110

2.2.4 Boolean Operators 115

2.2.5 Precedence 116

2.2.6 Boolean Operators Example 117

2.2.7 Another Word on Assignments 120

2.2.8 The Selection Statement for Decisions 122

2.2.9 More on Python Decision Statements 122

2.2.10 Repetition: the while Statement 126

2.2.11 Sentinel Loop 136

2.2.12 Summary of Repetition 136

2.2.13 More on the for Statement 137

2.2.14 Nesting 140

2.2.15 Hailstone Sequence Example 142

2.3 Visual Vignette: Plotting Data with Pylab 143

2.3.1 First Plot and Using a List 144

2.3.2 More Interesting Plot: A Sine Wave 145

book PH02031-Punch February 3, 2016 14:59

x C O N T E N T S

2.4 Computer Science Perspectives: Minimal Universal Computing 147

2.4.1 Minimal Universal Computing 147

2.5 What’s Wrong with My Code? 148

Chapter 3 Algorithms and Program Development 161

3.1 What Is an Algorithm? 161

3.1.1 Example Algorithms 162

3.2 Algorithm Features 163

3.2.1 Algorithm versus Program 163

3.2.2 Qualities of an Algorithm 165

3.2.3 Can We Really Do All That? 167

3.3 What Is a Program? 167

3.3.1 Readability 167

3.3.2 Robust 171

3.3.3 Correctness 172

3.4 Strategies for Program Design 173

3.4.1 Engage and Commit 173

3.4.2 Understand, Then Visualize 174

3.4.3 Think Before You Program 175

3.4.4 Experiment 175

3.4.5 Simplify 175

3.4.6 Stop and Think 177

3.4.7 Relax: Give Yourself a Break 177

3.5 A Simple Example 177

3.5.1 Build the Skeleton 178

3.5.2 Output 178

3.5.3 Input 179

3.5.4 Doing the Calculation 181

P A R T 3 D ATA S T R U C T U R E S A N D F U N C T I O N S 1 8 7

Chapter 4 Working with Strings 189

4.1 The String Type 190

4.1.1 The Triple-Quote String 190

4.1.2 Nonprinting Characters 191

4.1.3 String Representation 191

4.1.4 Strings as a Sequence 192

4.1.5 More Indexing and Slicing 193

4.1.6 Strings Are Iterable 198

book PH02031-Punch February 3, 2016 14:59

C O N T E N T S xi

4.2 String Operations 199

4.2.1 Concatenation (+) and Repetition (*) 199

4.2.2 Determining When + Indicates Addition or
Concatenation? 200

4.2.3 Comparison Operators 201

4.2.4 The in Operator 202

4.2.5 String Collections Are Immutable 203

4.3 A Preview of Functions and Methods 205

4.3.1 A String Method 205

4.3.2 Determining Method Names and Method Arguments 208

4.3.3 String Methods 210

4.3.4 String Functions 210

4.4 Formatted Output for Strings 211

4.4.1 Descriptor Codes 212

4.4.2 Width and Alignment Descriptors 213

4.4.3 Floating-Point Precision Descriptor 214

4.5 Control and Strings 215

4.6 Working with Strings 218

4.6.1 Example: Reordering a Person’s Name 218

4.6.2 Palindromes 220

4.7 More String Formatting 223

4.8 Unicode 226

4.9 A GUI to Check a Palindrome 228

4.10 What’s Wrong with My Code? 232

Chapter 5 Functions—QuickStart 245

5.1 What Is a Function? 245

5.1.1 Why Have Functions? 246

5.2 Python Functions 247

5.3 Flow of Control with Functions 250

5.3.1 Function Flow in Detail 251

5.3.2 Parameter Passing 251

5.3.3 Another Function Example 253

5.3.4 Function Example: Area of a Triangle 254

5.3.5 Functions Calling Functions 258

5.3.6 When to Use a Function 259

5.3.7 What If There Is No Return Statement? 260

5.3.8 What If There Are Multiple Return Statements? 260

book PH02031-Punch February 3, 2016 14:59

xii C O N T E N T S

5.4 Visual Vignette: Turtle Flag 261

5.5 What’s Wrong with My Code? 262

Chapter 6 Files and Exceptions I 271

6.1 What Is a File? 271

6.2 Accessing Files: Reading Text Files 271

6.2.1 What’s Really Happening? 272

6.3 Accessing Files: Writing Text Files 273

6.4 Reading and Writing Text Files in a Program 274

6.5 File Creation and Overwriting 275

6.5.1 Files and Functions Example: Word Puzzle 276

6.6 First Cut, Handling Errors 282

6.6.1 Error Names 283

6.6.2 The try-except Construct 283

6.6.3 try-except Flow of Control 284

6.6.4 Exception Example 285

6.7 Example: Counting Poker Hands 288

6.7.1 Program to Count Poker Hands 291

6.8 GUI to Count Poker Hands 299

6.8.1 Count Hands Function 300

6.8.2 The Rest of the GUI Code 302

6.9 Error Check Float Input 304

6.10 What’s Wrong with My Code? 304

Chapter 7 Lists and Tuples 311

7.1 What Is a List? 311

7.2 What You Already Know How To Do With Lists 313

7.2.1 Indexing and Slicing 314

7.2.2 Operators 315

7.2.3 Functions 317

7.2.4 List Iteration 318

7.3 Lists Are Diferent than Strings 319

7.3.1 Lists Are Mutable 319

7.3.2 List Methods 320

7.4 Old and New Friends: Split and Other Functions and Methods 325

7.4.1 Split and Multiple Assignment 325

7.4.2 List to String and Back Again, Using join 326

7.4.3 The Sorted Function 327

book PH02031-Punch February 3, 2016 14:59

C O N T E N T S xiii

7.5 Working with Some Examples 328

7.5.1 Anagrams 328

7.5.2 Example: File Analysis 334

7.6 Mutable Objects and References 340

7.6.1 Shallow versus Deep Copy 345

7.6.2 Mutable versus Immutable 349

7.7 Tuples 350

7.7.1 Tuples from Lists 352

7.7.2 Why Tuples? 353

7.8 Lists: The Data Structure 353

7.8.1 Example Data Structure 354

7.8.2 Other Example Data Structures 355

7.9 Algorithm Example: U.S. EPA Automobile Mileage Data 355

7.9.1 CSV Module 365

7.10 Visual Vignette: Plotting EPA Data 366

7.11 List Comprehension 368

7.11.1 Comprehensions, Expressions, and the Ternary
Operator 370

7.12 Visual Vignette: More Plotting 370

7.12.1 Pylab Arrays 371

7.12.2 Plotting Trigonometric Functions 373

7.13 GUI to Find Anagrams 374

7.13.1 Function Model 374

7.13.2 Controller 375

7.14 What’s Wrong with My Code? 377

Chapter 8 More on Functions 395

8.1 Scope 395

8.1.1 Arguments, Parameters, and Namespaces 397

8.1.2 Passing Mutable Objects 399

8.1.3 Returning a Complex Object 401

8.1.4 Refactoring evens 403

8.2 Default Values and Parameters as Keywords 404

8.2.1 Example: Default Values and Parameter Keywords 405

8.3 Functions as Objects 407

8.3.1 Function Annotations 408

8.3.2 Docstrings 409

book PH02031-Punch February 3, 2016 14:59

xiv C O N T E N T S

8.4 Example: Determining a Final Grade 410

8.4.1 The Data 410

8.4.2 The Design 410

8.4.3 Function: weighted_grade 411

8.4.4 Function: parse_line 411

8.4.5 Function: main 412

8.4.6 Example Use 413

8.5 Pass “by Value” or “by Reference” 413

8.6 What’s Wrong with My Code? 414

Chapter 9 Dictionaries and Sets 423

9.1 Dictionaries 423

9.1.1 Dictionary Example 424

9.1.2 Python Dictionaries 425

9.1.3 Dictionary Indexing and Assignment 425

9.1.4 Operators 426

9.1.5 Ordered Dictionaries 431

9.2 Word Count Example 432

9.2.1 Count Words in a String 432

9.2.2 Word Frequency for Gettysburg Address 433

9.2.3 Output and Comments 437

9.3 Periodic Table Example 438

9.3.1 Working with CSV Files 439

9.3.2 Algorithm Overview 441

9.3.3 Functions for Divide and Conquer 441

9.4 Sets 445

9.4.1 History 445

9.4.2 What’s in a Set? 445

9.4.3 Python Sets 446

9.4.4 Methods, Operators, and Functions for Python Sets 447

9.4.5 Set Methods 447

9.5 Set Applications 452

9.5.1 Relationship between Words of Diferent 452

9.5.2 Output and Comments 456

9.6 Scope: The Full Story 456

9.6.1 Namespaces and Scope 457

9.6.2 Search Rule for Scope 457

9.6.3 Local 457

9.6.4 Global 458

9.6.5 Built-Ins 462

9.6.6 Enclosed 463

book PH02031-Punch February 3, 2016 14:59

C O N T E N T S xv

9.7 Using zip to Create Dictionaries 464

9.8 Dictionary and Set Comprehensions 465

9.9 Visual Vignette: Bar Graph of Word Frequency 466

9.9.1 Getting the Data Right 466

9.9.2 Labels and the xticks Command 467

9.9.3 Plotting 467

9.10 GUI to Compare Files 468

9.10.1 Controller and View 469

9.10.2 Function Model 471

9.11 What’s Wrong with My Code? 473

Chapter 10 More Program Development 483

10.1 Introduction 483

10.2 Divide and Conquer 483

10.2.1 Top-Down Refinement 484

10.3 The Breast Cancer Classifier 484

10.3.1 The Problem 484

10.3.2 The Approach: Classification 485

10.3.3 Training and Testing the Classifier 485

10.3.4 Building the Classifier 485

10.4 Designing the Classifier Algorithm 487

10.4.1 Divided, now Conquer 490

10.4.2 Data Structures 491

10.4.3 File Format 491

10.4.4 The make_training_set Function 492

10.4.5 The make_test_set Function 496

10.4.6 The train_classifer Function 497

10.4.7 train_classifer, Round 2 499

10.4.8 Testing the Classifier on New Data 502

10.4.9 The report_results Function 506

10.5 Running the Classifier on Full Data 508

10.5.1 Training versus Testing 508

10.6 Other Interesting Problems 512

10.6.1 Tag Clouds 512

10.6.2 S&P 500 Predictions 514

10.6.3 Predicting Religion with Flags 517

10.7 GUI to Plot the Stock Market 519

10.7.1 Function Model 519

10.7.2 Controller and View 521

book PH02031-Punch February 3, 2016 14:59

xvi C O N T E N T S

P A R T 4 C L A S S E S , M A K I N G Y O U R O W N D ATA S T R U C T U R E S

A N D A L G O R I T H M S 5 2 7

Chapter 11 Introduction to Classes 529

11.1 QuickStart: Simple Student Class 529

11.2 Object-Oriented Programming 530

11.2.1 Python Is Object-Oriented! 530

11.2.2 Characteristics of OOP 531

11.3 Working with OOP 531

11.3.1 Class and Instance 531

11.4 Working with Classes and Instances 532

11.4.1 Built-In Class and Instance 532

11.4.2 Our First Class 534

11.4.3 Changing Attributes 536

11.4.4 The Special Relationship Between an Instance and
Class: instance-of 537

11.5 Object Methods 540

11.5.1 Using Object Methods 540

11.5.2 Writing Methods 541

11.5.3 The Special Argument self 542

11.5.4 Methods Are the Interface to a Class Instance 544

11.6 Fitting into the Python Class Model 545

11.6.1 Making Programmer-Defined Classes 545

11.6.2 A Student Class 545

11.6.3 Python Standard Methods 546

11.6.4 Now There Are Three: Class Designer, Programmer,
and User 550

11.7 Example: Point Class 551

11.7.1 Construction 553

11.7.2 Distance 553

11.7.3 Summing Two Points 553

11.7.4 Improving the Point Class 554

11.8 Python and OOP 558

11.8.1 Encapsulation 558

11.8.2 Inheritance 559

11.8.3 Polymorphism 559

11.9 Python and Other OOP Languages 559

11.9.1 Public versus Private 559

11.9.2 Indicating Privacy Using Double Underscores (__) 560

book PH02031-Punch February 3, 2016 14:59

C O N T E N T S xvii

11.9.3 Python’s Philosophy 561

11.9.4 Modifying an Instance 562

11.10 What’s Wrong with My Code? 562

Chapter 12 More on Classes 571

12.1 More About Class Properties 571

12.1.1 Rational Number (Fraction) Class Example 572

12.2 How Does Python Know? 574

12.2.1 Classes, Types, and Introspection 574

12.2.2 Remember Operator Overloading 577

12.3 Creating Your Own Operator Overloading 577

12.3.1 Mapping Operators to Special Methods 578

12.4 Building the Rational Number Class 581

12.4.1 Making the Class 581

12.4.2 Review Fraction Addition 583

12.4.3 Back to Adding Fractions 586

12.4.4 Equality and Reducing Rationals 590

12.4.5 Divide and Conquer at Work 593

12.5 What Doesn’t Work (Yet) 593

12.5.1 Introspection 594

12.5.2 Repairing int + Rational Errors 596

12.6 Inheritance 598

12.6.1 The “Find the Attribute” Game 599

12.6.2 Using Inheritance 602

12.6.3 Example: The Standard Model 603

12.7 What’s Wrong with My Code? 608

Chapter 13 Program Development with Classes 615

13.1 Predator–Prey Problem 615

13.1.1 The Rules 616

13.1.2 Simulation Using Object-Oriented Programming 617

13.2 Classes 617

13.2.1 Island Class 617

13.2.2 Predator and Prey, Kinds of Animals 619

13.2.3 Predator and Prey Classes 622

13.2.4 Object Diagram 623

13.2.5 Filling the Island 623

13.3 Adding Behavior 626

13.3.1 Refinement: Add Movement 626

13.3.2 Refinement: Time Simulation Loop 629

book PH02031-Punch February 3, 2016 14:59

xviii C O N T E N T S

13.4 Refinement: Eating, Breeding, and Keeping Time 630

13.4.1 Improved Time Loop 631

13.4.2 Breeding 634

13.4.3 Eating 636

13.4.4 The Tick of the Clock 637

13.5 Refinement: How Many Times to Move? 638

13.6 Visual Vignette: Graphing Population Size 639

P A R T 5 B E I N G A B E T T E R P R O G R A M M E R 6 4 3

Chapter 14 Files and Exceptions II 645

14.1 More Details on Files 645

14.1.1 Other File Access Methods, Reading 647

14.1.2 Other File Access Methods, Writing 649

14.1.3 Universal New Line Format 651

14.1.4 Moving Around in a File 652

14.1.5 Closing a File 654

14.1.6 The with Statement 654

14.1.7 Text File Encodings; Unicode 655

14.2 CSV Files 656

14.2.1 CSV Module 657

14.2.2 CSV Reader 658

14.2.3 CSV Writer 659

14.2.4 Example: Update Some Grades 659

14.3 Module: os 661

14.3.1 Directory (Folder) Structure 662

14.3.2 os Module Functions 663

14.3.3 os Module Example 665

14.4 More on Exceptions 667

14.4.1 Basic Exception Handling 668

14.4.2 A Simple Example 669

14.4.3 Events 671

14.4.4 A Philosophy Concerning Exceptions 672

14.5 Exception: else and finally 673

14.5.1 finally and with 673

14.5.2 Example: Refactoring the Reprompting of a File Name 673

14.6 More on Exceptions 675

14.6.1 Raise 675

14.6.2 Create Your Own 676

14.7 Example: Password Manager 677

book PH02031-Punch February 3, 2016 14:59

C O N T E N T S xix

Chapter 15 Recursion: Another Control Mechanism 687

15.1 What Is Recursion? 687

15.2 Mathematics and Rabbits 689

15.3 Let’s Write Our Own: Reversing a String 692

15.4 How Does Recursion Actually Work? 694

15.4.1 Stack Data Structure 695

15.4.2 Stacks and Function Calls 697

15.4.3 A Better Fibonacci 699

15.5 Recursion in Figures 700

15.5.1 Recursive Tree 700

15.5.2 Sierpinski Triangles 702

15.6 Recursion to Non-recursion 703

15.7 GUI for Turtle Drawing 704

15.7.1 Using Turtle Graphics to Draw 704

15.7.2 Function Model 705

15.7.3 Controller and View 706

Chapter 16 Other Fun Stuf with Python 709

16.1 Numbers 709

16.1.1 Fractions 710

16.1.2 Decimal 714

16.1.3 Complex Numbers 718

16.1.4 Statistics Module 720

16.1.5 Random Numbers 722

16.2 Even More on Functions 724

16.2.1 Having a Varying Number of Parameters 725

16.2.2 Iterators and Generators 728

16.2.3 Other Functional Programming Ideas 733

16.2.4 Some Functional Programming Tools 734

16.2.5 Decorators: Functions Calling Functions 736

16.3 Classes 741

16.3.1 Properties 742

16.3.2 Serializing an Instance: pickle 745

16.4 Other Things in Python 748

16.4.1 Data Types 748

16.4.2 Built-in Modules 748

16.4.3 Modules on the Internet 749

Chapter 17 The End, or Perhaps the Beginning 751

book PH02031-Punch February 3, 2016 14:59

xx C O N T E N T S

A P P E N D I C E S 7 5 3
Appendix A Getting and Using Python 753

A.1 About Python 753

A.1.1 History 753

A.1.2 Python 3 753

A.1.3 Python Is Free and Portable 754

A.1.4 Installing Anaconda 756

A.1.5 Starting Our Python IDE: Spyder 756

A.1.6 Working with Python 757

A.1.7 Making a Program 760

A.2 The IPython Console 762

A.2.1 Anatomy of an iPython Session 763

A.2.2 Your Top Three iPython Tips 764

A.2.3 Completion and the Tab Key 764

A.2.4 The ? Character 766

A.2.5 More iPython Tips 766

A.3 Some Conventions for This Book 769

A.3.1 Interactive Code 770

A.3.2 Program: Written Code 770

A.3.3 Combined Program and Output 770

A.4 Summary 771

Appendix B Simple Drawing with Turtle Graphics 773

B.0.1 What Is a Turtle? 773

B.0.2 Motion 775

B.0.3 Drawing 775

B.0.4 Color 777

B.0.5 Drawing with Color 779

B.0.6 Other Commands 781

B.1 Tidbits 783

B.1.1 Reset/Close the Turtle Window 783

Appendix C What’s Wrong with My Code? 785

C.1 It’s Your Fault! 785

C.1.1 Kinds of Errors 785

C.1.2 “Bugs” and Debugging 787

C.2 Debugging 789

C.2.1 Testing for Correctness 789

C.2.2 Probes 789

C.2.3 Debugging with Spyder Example 1 789

C.2.4 Debugging Example 1 Using print() 793

book PH02031-Punch February 3, 2016 14:59

C O N T E N T S xxi

C.2.5 Debugging with Spyder Example 2 794

C.2.6 More Debugging Tips 802

C.3 More about Testing 803

C.3.1 Testing Is Hard! 804

C.3.2 Importance of Testing 805

C.3.3 Other Kinds of Testing 805

C.4 What’s Wrong with My Code? 805

C.4.1 Chapter 1: Beginnings 805

C.4.2 Chapter 2: Control 807

C.4.3 Chapter 4: Strings 808

C.4.4 Chapter 5: Functions 809

C.4.5 Chapter 6: Files and Exceptions 810

C.4.6 Chapter 7: Lists and Tuples 811

C.4.7 Chapter 8: More Functions 812

C.4.8 Chapter 9: Dictionaries 813

C.4.9 Chapter 11: Classes I 814

C.4.10 Chapter 12: Classes II 815

Appendix D Pylab: A Plotting and Numeric Tool 817

D.1 Plotting 817

D.2 Working with pylab 818

D.2.1 Plot Command 818

D.2.2 Colors, Marks, and Lines 819

D.2.3 Generating X-Values 819

D.2.4 Plot Properties 820

D.2.5 Tick Labels 821

D.2.6 Legend 822

D.2.7 Bar Graphs 824

D.2.8 Histograms 824

D.2.9 Pie Charts 825

D.2.10How Powerful Is pylab? 826

Appendix E Quick Introduction to Web-based User Interfaces 829

E.0.1 MVC Architecture 830

E.1 Flask 830

E.2 QuickStart Flask, Hello World 831

E.2.1 What Just Happened? 832

E.2.2 Multiple Routes 833

E.2.3 Stacked Routes, Passing Address Arguments 835

E.3 Serving Up Real HTML Pages 836

E.3.1 A Little Bit of HTML 836

E.3.2 HTML Tags 836

book PH02031-Punch February 3, 2016 14:59

xxii C O N T E N T S

E.3.3 Flask Returning Web Pages 838

E.3.4 Getting Arguments into Our Web Pages 839

E.4 Active Web Pages 841

E.4.1 Forms in wtforms 841

E.4.2 A Good Example Goes a Long Way 842

E.4.3 Many Fields Example 847

E.5 Displaying and Updating Images 852

E.6 Odds and Ends 857

Appendix F Table of UTF-8 One Byte Encodings 859

Appendix G Precedence 861

Appendix H Naming Conventions 863

H.1 Python Style Elements 864

H.2 Naming Conventions 864

H.2.1 Our Added Naming Conventions 864

H.3 Other Python Conventions 865

Appendix I Check Yourself Solutions 867

I.1 Chapter 1 867

Variables and Assignment 867

Types and Operators 867

I.2 Chapter 2 868

Basic Control Check 868

Loop Control Check 868

More Control Check 868

for and range Check 868

I.3 Chapter 4 869

Slicing Check 869

String Comparison Check 869

I.4 Chapter 5 869

Simple Functions Check 869

I.5 Chapter 6 869

Exception Check 869

Function Practice with Strings 870

I.6 Chapter 7 870

Basic Lists Check 870

Lists and Strings Check 870

Mutable List Check 870

book PH02031-Punch February 3, 2016 14:59

C O N T E N T S xxiii

I.7 Chapter 8 870

Passing Mutables Check 870

More on Functions Check 871

I.8 Chapter 9 871

Dictionary Check 871

Set Check 871

I.9 Chapter 11 871

Basic Classes Check 871

Defining Special Methods 871

I.10 Chapter 12 872

Check Defining Your Own Operators 872

I.11 Chapter 14 872

Basic File Operations 872

Basic Exception Control 872

I N D E X 8 7 3

book PH02031-Punch February 3, 2016 14:59

•V I D E O N O T E S

VideoNote 0.1 Getting Python 13

VideoNote 1.1 Simple Arithmetic 64

VideoNote 1.2 Solving Your First Problem 73

VideoNote 2.1 Simple Control 96

VideoNote 2.2 Nested Control 140

VideoNote 3.1 Algorithm Decomposition 177

VideoNote 3.2 Algorithm Development 185

VideoNote 4.1 Playing with Strings 210

VideoNote 4.2 String Formatting 214

VideoNote 5.1 Simple Functions 251

VideoNote 5.2 Problem Design Using Functions 261

VideoNote 6.1 Reading Files 272

VideoNote 6.2 Simple Exception Handling 285

VideoNote 7.1 List Operations 327

VideoNote 7.2 List Application 349

VideoNote 8.1 More on Parameters 405

VideoNote 9.1 Using a Dictionary 437

VideoNote 9.2 More Dictionaries 465

VideoNote 10.1 Program Development: Tag Cloud 512

VideoNote 11.1 Designing a Class 545

VideoNote 11.2 Improving a Class 554

VideoNote 12.1 Augmenting a Class 593

VideoNote 12.2 Create a Class 596

VideoNote 13.1 Improve Simulation 623

VideoNote 14.1 Dictionary Exceptions 669

VideoNote 15.1 Recursion 692

VideoNote 16.1 Properties 742

xxiv

book PH02031-Punch February 3, 2016 14:59

•P R E F A C E

A FIRST COURSE IN COMPUTER SCIENCE IS ABOUT A NEW WAY OF SOLVING PROBLEMS

computationally. Our goal is that after the course, students when presented with a problem
will think, “Hey, I can write a program to do that!”

The teaching of problem solving is inexorably intertwined with the computer language
used. Thus, the choice of language for this first course is very important. We have cho-
sen Python as the introductory language for beginning programming students—majors and
non-majors alike—based on our combined 55 years of experience teaching undergradu-
ate introductory computer science at Michigan State University. Having taught the course
in Pascal, C/C++, and now Python, we know that an introductory programming language
should have two characteristics. First, it should be relatively simple to learn. Python’s sim-
plicity, powerful built-in data structures, and advanced control constructs allow students to
focus more on problem solving and less on language issues. Second, it should be practical.
Python supports learning not only fundamental programming issues such as typical pro-
gramming constructs, a fundamental object-oriented approach, common data structures,
and so on, but also more complex computing issues such as threads and regular expres-
sions. Finally, Python is “industrial strength” forming the backbone of companies such as
YouTube, DropBox, Industrial Light and Magic, and many others.

We emphasize both the fundamental issues of programming and practicality by focus-
ing on data manipulation and analysis as a theme—allowing students to work on real prob-
lems using either publicly available data sets from various Internet sources or self-generated
data sets from their own work and interests. We also emphasize the development of pro-
grams, providing multiple, worked out, examples, and three entire chapters for detailed de-
sign and implementation of programs. As part of this one-semester course, our students
have analyzed breast cancer data, catalogued movie actor relationships, predicted disrup-
tions of satellites from solar storms, and completed many other data analysis problems. We
have also found that concepts learned in a Python CS1 course transitioned to a CS2 C++
course with little or no impact on either the class material or the students.

xxv

book PH02031-Punch February 3, 2016 14:59

xxvi P R E F A C E

Our goals for the book are as follows:

� Teach problem solving within the context of CS1 to both majors and nonmajors using
Python as a vehicle.

� Provide examples of developing programs focusing on the kinds of data analysis prob-
lems students might ultimately face.

� Give students who take no programming course other than this CS1 course a practical
foundation in programming, enabling them to produce useful, meaningful results in
their respective fields of study.

W H AT ’ S N E W, T H I R D E D I T I O N

We have taught with this material for over eight years and continue to make improvements
to the book as well as adapting to the ever changing Python landscape, keeping up to date
with improvements. We list the major changes we have made below.

Anaconda: One of the issues our students ran into was the complexity associated with get-
ting Python packages, along with the necessary pre-requisites. Though tools like pip
address this problem to some extent, the process was still a bit overwhelming for intro-
ductory students.

Thus we switched to the Anaconda distribution made freely available from Con-
tinuum Analytics. They make available a full distribution with more than 100 modules
pre-installed, removing the need for package installation.

Appendix A, newly written for Anaconda, covers the installation process.
SPYDER: Another benefit of the Anaconda distribution is the Spyder Integrated Develop-

ment Environment. We have fully adopted Spyder as our default method for editing
and debugging code, changing from the default IDLE editor. Spyder provides a full
development environment and thus has a number of advantages (as listed at the Spyder
git page, https://github.com/spyder-ide/spyder/blob/master/README.md).

� Integrated editor
� Associated interactive console
� Integrated debugging
� Integrated variable explorer
� Integrated documentation viewer

Spyder is a truly modern Python IDE and the correct way for students to learn Python
programming.

Chapter 1 has been rewritten, incorporating the Spyder IDE and using Spyder is
sprinkled throughout the book. Appendix A provides a tutorial on Spyder.

https://github.com/spyder-ide/spyder/blob/master/README.md

book PH02031-Punch February 3, 2016 14:59

P R E F A C E xxvii

IPython: Anaconda also provides the iPython console as its interactive console. IPython is
a muchmore capable console than the default Python console, providing many features
including:

� An interactive history list, where each history line can be edited and re-invoked.
� Help on variables and functions using the “?” syntax.
� Command line completion

Every session of the book was redone for the iPython console and iPython’s features
are sprinkled throughout the book. Further, a tutorial on the use of iPython is provided
in Appendix A.

Debugging help: Debugging is another topic that is often a challenge for introductory
students. To address this need, we have introduced a “What’s Wrong with My Code”
element to the end of chapters 1, 2, 4, 5, 6, 7, 8, 9, and 11. These provide increasingly
detailed tips to deal with new Python features as they are introduced. An overall tutorial
is also provided in the new Appendix C.

As Spyder provides a debugger, use of that debugger is used for all examples.
Pylab updated: We have incorporated graphing through matplotlib/pylab into the book

since the first edition, but this module has changed somewhat over the years so the
“Visual Vignettes” at the end of chapters 1, 2, 5, 7, 9, and 13 have been updated and
somewhat simplified. In particular the discussions of NumPy have been removed ex-
cept for where they are useful for graphing. Appendix D has also been updated with
these changes.

Web-based GUIs: Building Graphic User Interfaces (GUIs) is a topic many students are
interested in. However, in earlier editions we hesitated to focus on GUI development
as part of an introductory text for a number of reasons:

� The extant tkinter is cross platform, but old and more complex to work with than
we would like for an introductory class.

� Getting a modern GUI toolset can be daunting, especially cross platform.
� Just which GUI toolset should we be working with?

A discussion withGregWilson (thanks Greg!) was helpful in resolving this problem. He
suggested doing Web-based GUIs as a modern GUI approach that is cross-platform,
relatively stable and provided in modern distributions like Anaconda.

What that left was the “complexity” issue. We choose to use the package fask

because it was relatively less complex, but more importantly was easily modularized
and could be used in a template fashion to design a GUI.

Thus, we wrote some simple GUI development in fask at the end of chapters 4,
6, 7, 9, 10, and 15. We also wrote a new Appendix E as a tutorial for development of
web-based GUIs.

Functions Earlier: One of the common feedback points we received was a request to
introduce functions earlier. Though we had purposefully done strings first, as a way to

book PH02031-Punch February 3, 2016 14:59

xxviii P R E F A C E

start working with data, we had sympathy for those instructors who wanted to change
the order and introduce functions before strings. Rather than pick a right way to do this,
we rewrote Chapter 5 so that it had no dependencies Chapter 4, the string chapter.
Instructors are now free to introduce functions anytime after Chapter 2 on control.
Likewise Chapter 4 on strings has no dependencies onChapter 5, the functions chapters.
Thus the instructor can choose the order they prefer.

Online Project Archive: We have established an online archive for Python CS1 projects,
http://www.cse.msu.edu/~cse231/PracticeOfComputingUsingPython/.
These describe various projects we have used over the years in our classes. This
site and its contents has been recognized by the National Center for Women & In-
formation Technology (NCWIT) and was awarded the 2015 NCWIT EngageCSEdu
Engagement Excellence Award.

New Exercises: We added 80 new end-of-chapter exercises.
Other changes: We have made a number of other changes as well:

� We updated Chapter 16 with a discussion about Python Numbers and the various
representations that are available

� We moved the content of some of the chapters in the “Getting Started” part to the
“Data Structures and Functions” part. This is really just a minor change to the
table of contents.

� We fixed various typos and errors that were either pointed out to us or we found
ourselves as we re-read the book.

http://www.cse.msu.edu/~cse231/PracticeOfComputingUsingPython

book PH02031-Punch February 3, 2016 14:59

•P R E F A C E T O T H E
S E C O N D E D I T I O N

Themain driver for a second edition came from requests for Python 3. We began our course
with Python 2 because Python 3 hadn’t been released in 2007 (it was first released in Decem-
ber 2008), and because we worried that it would take some time for important open-source
packages such as NumPy andMatPlotLib to transition to Python 3. WhenNumPy andMat-
PlotLib converted to Python 3 in 2011 we felt comfortable making the transition. Of course,
many other useful modules have also been converted to Python 3—the default installation
now includes thousands of modules. With momentum building behind Python 3 it was time
for us to rewrite our course and this text.

Why Python 3? The Python community decided to break backward compatibility with
Python 3 to fix nagging inconsistencies in the language. One important change was moving
the default character encoding to Unicode which recognizes the world-wide adoption of the
language. In many ways beyond the introductory level, Python 3 is a better language and the
community is making the transition to Python 3.

At the introductory level the transition to Python 3 appears to be relatively small, but
the change resulted in touching nearly every page of the book.

One notable addition was:

� We added a set of nine RULES to guide novice programmers.

We reworked every section of this text—some more than others. We hope that you will
enjoy the changes. Thanks.

B O O K O R G A N I Z AT I O N

At the highest level our text follows a fairly traditional CS1 order, though there are some
diferences. For example, we cover strings rather early (before functions) so that we can do
more data manipulation early on. We also include elementary file I/O early for the same
reason, leaving detailed coverage for a later chapter. Given our theme of data manipulation,

xxix

book PH02031-Punch February 3, 2016 14:59

xxx C H A P T E R 1 • P R E F A C E T O T H E S E C O N D E D I T I O N

we feel this is appropriate. We also “sprinkle” topics like plotting and drawing throughout
the text in service of the data manipulation theme.

We use an “object-use-first” approach where we use built-in Python objects and their
methods early in the book, leaving the design and implementation of user-designed objects
for later. We have found that students are more receptive to building their own classes once
they have experienced the usefulness of Python’s existing objects. In other words, we moti-
vate the need for writing classes. Functions are split into two parts because of how Python
handles mutable objects such as lists as parameters; discussion of those issues can only come
after there is an understanding of lists as mutable objects.

Three of the chapters (3, 10, and 13) are primarily program design chapters, provid-
ing an opportunity to “tie things together,” as well as showing how to design a solution. A
few chapters are intended as supplemental reading material for the students, though lectur-
ers may choose to cover these topics as well. For background, we provide a Chapter 0 that
introduces some general concepts of a computer as a device and some computer terminol-
ogy. We feel such an introduction is important—everyone should understand a little about
a computer, but this material can be left for reading. The last chapters in the text may not
be reached in some courses.

B O O K F E AT U R E S

1.0.1 Data Manipulation
Data manipulation is a theme. The examples range from text analysis to breast cancer classi-
fication. The data.gov site is a wonderful source of interesting and relevant data. Along the
way, we provide some analysis examples using simple graphing. To incorporate drawing and
graphing, we use established packages instead of developing our own: one is built-in (Turtle
graphics); the other is widely used (MatPlotLib with NumPy).

We have tried to focus on non-numeric examples in the book, but some numeric ex-
amples are classics for a good reason. For example, we use a rational numbers example for
creating classes that overload operators. Our goal is always to use the best examples.

1.0.2 Problem Solving and Case Studies
Throughout the text, we emphasize problem solving, especially a divide-and-conquer ap-
proach to developing a solution. Three chapters (3, 10, and 13) are devoted almost exclu-
sively to program development. Here we walk students through the solution of larger ex-
amples. In addition to design, we show mistakes and how to recover from them. That is, we
don’t simply show a solution, but show a process of developing a solution.

1.0.3 Code Examples
There are over 180 code examples in the text—many are brief, but others illustrate piecemeal
development of larger problems.

book PH02031-Punch February 3, 2016 14:59

P R E F A C E T O T H E S E C O N D E D I T I O N xxxi

1.0.4 Interactive Sessions
The Python interpreter provides a wonderful mechanism for briefly illustrating pro-
gramming and problem-solving concepts. We provide almost 250 interactive sessions for
illustration.

1.0.5 Exercises and Programming Projects
Practice, practice, and more practice. We provide over 275 short exercises for students and
nearly 30 longer programming projects (many with multiple parts).

1.0.6 Self-Test Exercises
Embedded within the chapters are 24 self-check exercises, each with five or more associated
questions.

1.0.7 Programming Tips
We provide over 40 special notes to students on useful tips and things to watch out for.
These tips are boxed for emphasis.

S U P P L E M E N TA R Y M AT E R I A L O N L I N E
� For students
– All example source code
– Data sets used in examples

The above material is freely available at www.pearsonhighered.com/cs-resources/

� For instructors
– PowerPoint slides
– Laboratory exercises
– Figures (PDF) for use in your own slides
– Exercise solutions

Qualified instructors may obtain supplementary material by visiting www.pearsonhighered
.com/irc. Register at the site for access. You may also contact your local Pearson Education
sales representative

W. F. Punch
R. J. Enbody

http://www.pearsonhighered.com/cs-resources
http://www.pearsonhighered.com/irc
http://www.pearsonhighered.com/irc

book PH02031-Punch February 3, 2016 14:59

PROGRAMMING PRACTICE

IMMEDIATE, PERSONALIZED FEEDBACK

GRADUATED COMPLEXITY

PEARSON eTEXT

DYNAMIC ROSTER

STEP-BY-STEP VIDEONOTE TUTORIALS

For more information and titles available with MyProgrammingLab,

please visit www.myprogramminglab.com.

Through the power of practice and immediate personalized feedback,

MyProgrammingLab helps improve your students’ performance.

http://www.myprogramminglab.com

book2 PH02031-Punch February 2, 2016 14:18

•1P A R T

Thinking About Computing

Chapter 0 The Study of Computer Science

book2 PH02031-Punch February 2, 2016 14:18

This page intentionally left blank

book2 PH02031-Punch February 2, 2016 14:18

•0C H A P T E R

The Study of Computer
Science

Composing computer programs to solve scientific problems is like writing
poetry. You must choose every word with care and link it with the other words in
perfect syntax.

James Lovelock

0.1 W H Y C O M P U T E R S C I E N C E ?
It is a fair question to ask. Why should anyone bother to study computer science? Further-
more, what is “computer science”? Isn’t this all just about programming? All good questions.
We think it is worth discussing them before you forge ahead with the rest of the book.

0.1.1 Importance of Computer Science
Let’s be honest. We wouldn’t be writing the book and asking you to spend your valuable time
if we didn’t think that studying computer science is important. There are a couple of ways
to look at why this is true.

First, we all know that computers are everywhere, millions uponmillions of them.What
were once rare, expensive items are as common place as, well, any commodity you can imag-
ine (we were going to say the proverbial toaster, but there are many times more computers
than toasters. In fact, there is likely a small computer in your toaster!). However, that isn’t
enough of a reason. There are millions and millions of cars, and universities don’t require
auto mechanics as an area of study.

Second, Computers are not only common, but they are also more universally applicable
than any other commodity in history. A car is good for transportation, but a computer can

3

book2 PH02031-Punch February 2, 2016 14:18

4 C H A P T E R 0 • T H E S T U D Y O F C O M P U T E R S C I E N C E

be used in so many situations. In fact, there is almost no area one can imagine where a
computer would not be useful. That is a key attribute. No matter what your area of interest,
a computer could be useful there as a tool. The computer’s universal utility is unique, and
learning how to use such a tool is important.

0.1.2 Computer Science Around You
Computing surrounds you, and it is computer science that put it there. There are a multitude
of examples, but here are a few worth noting.

Social Networking The tools that facilitate social networking such as Facebook or Twitter
are, of course, computer programs. However, the tools that help study the interactions
within social networks involve important computer science fields such as graph theory.
For example, the Iraqi dictator Saddam Hussein was located using the graph theoretic
analysis of his social network.

Smartphones Smartphones are small, very portable computers. Apps for smartphones are
simple computer programs written specifically for smartphones.

Your CarYour car probably hosts dozens of computers. They control the engine, the brakes,
the audio system, the navigation, and the climate control system. They determine if a
crash is occurring and trigger the air bags. Some cars park automatically or apply the
brakes if a crash is imminent. Fully autonomous cars are being tested, as are cars that
talk to each other.

The Internet The backbone of the Internet is a collection of connected computers called
routers that decide the best way to send information to its destination.

0.1.3 Computer “Science”
Any field that has the word science in its name is guaranteed thereby not to be
a science.

Frank Harary

A popular view of the term “computer science” is that it is a glorified way to say “computer
programming.” It is true that computer programming is often the way that people are intro-
duced to computing in general, and that computer programming is the primary reasonmany
take computing courses. However, there is indeed more to computing than programming,
hence the term “computer science.” Here are a few examples.

Theory of Computation
Before there were the vast numbers of computers that are available today, scientists were
thinking about what it means to do computing and what the limits might be. They would
ask questions, such as whether there exist problems that we can conceive of but cannot

book2 PH02031-Punch February 2, 2016 14:18

0 . 1 • W H Y C O M P U T E R S C I E N C E ? 5

compute. It turns out there are. One of these problems, called the “Halting Problem,”1

cannot be solved by a program running on any computer. Knowing what you can and cannot
solve on a computer is an important issue and a subject of study among computer scientists
that focus on the theory of computation.

Computational Efficiency
The fact that a problem is computable does notmean it is easily computed. Knowing roughly
how difcult a problem is to solve is also very important. Determining ameaningful measure
of difculty is, in itself, an interesting issue, but imagine we are concerned only with time.
Consider designing a solution to a problem that, as part of the solution, required you to sort
100,000 items (say cancer patient records, or asteroid names, or movie episodes, etc.). A slow
algorithm, such as the sorting algorithm called the Bubble Sort, might take approximately
800 seconds (about 13 minutes); another sorting algorithm called Quick Sort might take
approximately 0.3 seconds. That is a diference of around 2400 times! That large a diference
might determine whether it is worth doing. If you are creating a solution, it would be good
to know what makes your solution slow or what makes it fast.

Algorithms and Data Structures
Algorithms and data structures are the currency of the computer scientist. Discussed more
in Chapter 3, algorithms are the methods used to solve problems, whereas data structures
are the organizations of data that the algorithms use. These two concepts are distinct: a
general approach to solving a problem (such as searching for a particular value, sorting a list
of objects and encrypting a message) difers from the organization of the data that is being
processed (as a list of objects, as a dictionary of key-value pairs, as a “tree” of records).
However, they are also tightly coupled. Furthermore, both algorithms and data structures
can be examined independently of how they might be programmed. That is, one designs
algorithms and data structures and then actually implements them in a particular computer
program. Understanding abstractly how to design both algorithms and data structures in-
dependent of the programming language is critical for writing correct and efcient code.

Parallel Processing
It may seem odd to include what many consider an advanced topic, but parallel processing,
using multiple computers to solve a problem, is an issue for everyone these days. Why? As
it turns out, most computers come with at least two processors or CPUs (see Section 0.6),
and many come with four or more. The Playstation4(TM) game console uses a special AMD
chip with a total of eight processors, and Intel has released its new Phi card with more than
60 processors! What does this mean to us, as both consumers and new computer scientists?

1 http://www.wired.com/2014/02/halting-problem/

http://www.wired.com/2014/02/halting-problem

book2 PH02031-Punch February 2, 2016 14:18

6 C H A P T E R 0 • T H E S T U D Y O F C O M P U T E R S C I E N C E

The answer is that new algorithms, data structures, and programming paradigms will
be needed to take advantage of this new processing environment. Orchestrating many pro-
cessors to solve a problem is an exciting and challenging task.

Software Engineering
Even the process of writing programs itself has developed its own subdiscipline within
computer science. Dubbed “software engineering,” it concerns the process of creating pro-
grams: from designing the algorithms they use, to supporting testing and maintenance of
the program once created. There is even a discipline interested in representing a devel-
oped program as a mathematical entity so that one can prove what a program will do once
written.

Many Others
We have provided but a taste of the many fields that make computer science such a won-
derfully rich area to explore. Every area that uses computation brings its own problems to
be explored.

0.1.4 Computer Science Through Computer Programming
We have tried to make the point that computer science is not just programming. However,
it is also true that for much of the book we will focus on just that aspect of computer
science: programming. Beginning with “problem solving through programming” allows one
to explore pieces of the computer science landscape as they naturally arise.

0.2 T H E D I F F I C U LT Y A N D P R O M I S E
O F P R O G R A M M I N G

If computer science, particularly computer programming, is so interesting, why doesn’t ev-
erybody do it? The truth is that it can be hard. We are often asked by beginning students,
“Why is programming so hard?” Even grizzled programming veterans, when honestly look-
ing back at their first experience, remember how difcult that first programming course was.
Why? Understanding why it might be hard gives you an edge on what you can do to control
the difculty.

0.2.1 Difficulty 1: Two Things at Once
Let’s consider an example. Let us say that, when you walk into that first day of Programming
101, you discover the course is not about programming but French poetry. French poetry?

book2 PH02031-Punch February 2, 2016 14:18

0 . 2 • T H E D I F F I C U L T Y A N D P R O M I S E O F P R O G R A M M I N G 7

Yes, French poetry. Imagine that you come in and the professor posts the following excerpt
from a poem on the board.

A une Damoyselle malade

Ma mignonne,
Je vous donne
Le bon jour;
Le séjour
C’est prison.

Clément Marot

Your assigned task is to translate this poetry into English (or German, or Russian, what-
ever language is your native tongue). Let us also assume, for the moment, that:

(a) You do not know French.
(b) You have never studied poetry.

You have two problems on your hands. First, you have to gain a better understanding
of the syntax and semantics (the form and substance) of the French language. Second, you
need to learn more about the “rules” of poetry and what constitutes a good poem.

Lest you think that this is a trivial matter, an entire book has been written by Douglas
Hofstadter on the very subject of the difculty of translating this one poem (“Le Ton beau
de Marot”).

So what’s your first move? Most people would break out a dictionary and, line by line,
try to translate the poem. Hofstadter, in his book, does exactly that, producing the crude
translation in Figure 0.1.

My Sweet/Cute

[One] (Feminine)

My sweet/cute [one]
(feminine)
I [to] you (respectful)
give/bid/convey
The good day (i.e., a
hello, i.e., greetings).
The stay/sojourn/
visit (i.e., quarantine)
{It} is prison.

A une Damoyselle malade

Ma mignonne,
Je vous donne
Le bon jour;
Le séjour
C’est prison.

FIGURE 0.1 Crude translation of excerpt.

book2 PH02031-Punch February 2, 2016 14:18

8 C H A P T E R 0 • T H E S T U D Y O F C O M P U T E R S C I E N C E

The result is hardly a testament to beautiful poetry. This translation does capture the
syntax and semantics, but not the poetry, of the original. If we take a closer look at the poem,
we can discern some features that a good translation should incorporate. For example:

� Each line consists of three syllables.
� Each line’s main stress falls on its final syllable.
� The poem is a string of rhyming couplets: AA, BB, CC, …
� The semantic couplets are out of phase with the rhyming couplets: A, AB, BC, …

Taking some of these ideas (and many more) into account, Hofstadter comes up with
the translation in Figure 0.2.

My Sweet Dear

My sweet dear,
I send cheer –
All the best!
Your forced rest
Is like jail.

A une Damoyselle malade

Ma mignonne,
Je vous donne
Le bon jour;
Le séjour
C’est prison.

FIGURE 0.2 Improved translation of excerpt.

Not only does this version sound far more like poetry, but it also matches the original
poem, following the rules and conveying the intent. It is a pretty good translation!

Poetry to Programming?
How does this poetry example help? Actually, the analogy is pretty strong. In coming to
programming for the first time, you face exactly the same issues:

� You are not yet familiar with the syntax and semantics of the language you are work-
ing with—in this case, of the programming language Python and perhaps not of any

programming language.
� You do not know how to solve problems using a computer—similar to not knowing
how to write poetry.

Just like the French poetry neophyte, you are trying to solve two problems simultane-
ously. On one level, you are just trying to get familiar with the syntax and semantics of the
language. At the same time, you are tackling a second, very difcult task: creating poetry in
the previous example and solving problems using a computer in this course.

Working at two levels, the meaning of the programming words and then the intent
of the program (what the program is trying to solve) are the two problems the beginning
programmer has to face. Just like the French poetry neophyte, your first programs will be
a bit clumsy as you learn both the programming language and how to use that language to
solve problems. For example, to a practiced eye, many first programs look similar in nature

book2 PH02031-Punch February 2, 2016 14:18

0 . 2 • T H E D I F F I C U L T Y A N D P R O M I S E O F P R O G R A M M I N G 9

to the literal translation of Hofstadter’s in Figure 0.1. Trying to do two things simultaneously
is difcult for anyone, so be gentle on yourself as you go forward with the process.

You might ask whether there is a better way. Perhaps, but we have not found it yet. The
way to learn programming is to program, just like swinging a baseball bat, playing the piano,
and winning at bridge; you can hear the rules and talk about the strategies, but learning is
best done by doing.

0.2.2 Difficulty 2: What Is a Good Program?
Having mastered some of the syntax and semantics of a programming language, how do
we write a good program? That is, how do we create a program that is more like poetry than
like the mess arrived at through literal translation?

It is difcult to discuss a good program when, at this point, you know so little, but there
are a couple of points that are worth noting even before we get started.

It’s All About Problem Solving
If the rules of poetry are what guides writing good poetry, what are the guidelines for writing
good programs? That is, what is it we have to learn in order to transition from a literal
translation to a good poem?

For programming, it is problem solving. When you write a program, you are creating, in
some detail, how it is that you think a particular problem or some class of problems, should
be solved. Thus, the program represents, in a very accessible way, your thoughts on prob-
lem solving. Your thoughts! That means, before you write the program you must have some
thoughts.

It is a common practice, even among veteran programmers, to get a problem and
immediately sit down and start writing a program. Typically that approach results in a mess,
and, for the beginning programmer, it results in an unsolved problem. Figuring out how to solve
a problem requires some initial thought. If you think before you program, you better understand
what the problem requires as well as the best strategies you might use to solve that problem.

Remember the two-level problem? Writing a program as you figure out how to solve
a problem means that you are working at two levels at once: the problem-solving level and
the programming level. That is more difcult than doing things sequentially. You should sit
down and think about the problem and how you want to solve it before you start writing the
program. We will talk more about this later, but rule 1 is:

Rule 1: Think before you program!

A Program as an Essay
When students are asked “What is the most important feature a program should have?”
many answer, “It should run.” By “run,” they mean that the program executes and actually
does something.

