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A FIRST COURSE IN COMPUTER SCIENCE IS ABOUT A NEW WAY OF SOLVING PROBLEMS

computationally. Our goal is that after the course, students when presented with a problem
will think, “Hey, I can write a program to do that!”

The teaching of problem solving is inexorably intertwined with the computer language
used. Thus, the choice of language for this first course is very important. We have cho-
sen Python as the introductory language for beginning programming students—majors and
non-majors alike—based on our combined 55 years of experience teaching undergradu-
ate introductory computer science at Michigan State University. Having taught the course
in Pascal, C/C++, and now Python, we know that an introductory programming language
should have two characteristics. First, it should be relatively simple to learn. Python’s sim-
plicity, powerful built-in data structures, and advanced control constructs allow students to
focus more on problem solving and less on language issues. Second, it should be practical.
Python supports learning not only fundamental programming issues such as typical pro-
gramming constructs, a fundamental object-oriented approach, common data structures,
and so on, but also more complex computing issues such as threads and regular expres-
sions. Finally, Python is “industrial strength” forming the backbone of companies such as
YouTube, DropBox, Industrial Light and Magic, and many others.

We emphasize both the fundamental issues of programming and practicality by focus-
ing on data manipulation and analysis as a theme—allowing students to work on real prob-
lems using either publicly available data sets from various Internet sources or self-generated
data sets from their own work and interests. We also emphasize the development of pro-
grams, providing multiple, worked out, examples, and three entire chapters for detailed de-
sign and implementation of programs. As part of this one-semester course, our students
have analyzed breast cancer data, catalogued movie actor relationships, predicted disrup-
tions of satellites from solar storms, and completed many other data analysis problems. We
have also found that concepts learned in a Python CS1 course transitioned to a CS2 C++
course with little or no impact on either the class material or the students.

xxv
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Our goals for the book are as follows:

� Teach problem solving within the context of CS1 to both majors and nonmajors using
Python as a vehicle.

� Provide examples of developing programs focusing on the kinds of data analysis prob-
lems students might ultimately face.

� Give students who take no programming course other than this CS1 course a practical
foundation in programming, enabling them to produce useful, meaningful results in
their respective fields of study.

W H AT ’ S N E W, T H I R D E D I T I O N

We have taught with this material for over eight years and continue to make improvements
to the book as well as adapting to the ever changing Python landscape, keeping up to date
with improvements. We list the major changes we have made below.

Anaconda: One of the issues our students ran into was the complexity associated with get-
ting Python packages, along with the necessary pre-requisites. Though tools like pip
address this problem to some extent, the process was still a bit overwhelming for intro-
ductory students.

Thus we switched to the Anaconda distribution made freely available from Con-
tinuum Analytics. They make available a full distribution with more than 100 modules
pre-installed, removing the need for package installation.

Appendix A, newly written for Anaconda, covers the installation process.
SPYDER: Another benefit of the Anaconda distribution is the Spyder Integrated Develop-

ment Environment. We have fully adopted Spyder as our default method for editing
and debugging code, changing from the default IDLE editor. Spyder provides a full
development environment and thus has a number of advantages (as listed at the Spyder
git page, https://github.com/spyder-ide/spyder/blob/master/README.md).

� Integrated editor
� Associated interactive console
� Integrated debugging
� Integrated variable explorer
� Integrated documentation viewer

Spyder is a truly modern Python IDE and the correct way for students to learn Python
programming.

Chapter 1 has been rewritten, incorporating the Spyder IDE and using Spyder is
sprinkled throughout the book. Appendix A provides a tutorial on Spyder.

https://github.com/spyder-ide/spyder/blob/master/README.md
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IPython: Anaconda also provides the iPython console as its interactive console. IPython is
a muchmore capable console than the default Python console, providing many features
including:

� An interactive history list, where each history line can be edited and re-invoked.
� Help on variables and functions using the “?” syntax.
� Command line completion

Every session of the book was redone for the iPython console and iPython’s features
are sprinkled throughout the book. Further, a tutorial on the use of iPython is provided
in Appendix A.

Debugging help: Debugging is another topic that is often a challenge for introductory
students. To address this need, we have introduced a “What’s Wrong with My Code”
element to the end of chapters 1, 2, 4, 5, 6, 7, 8, 9, and 11. These provide increasingly
detailed tips to deal with new Python features as they are introduced. An overall tutorial
is also provided in the new Appendix C.

As Spyder provides a debugger, use of that debugger is used for all examples.
Pylab updated: We have incorporated graphing through matplotlib/pylab into the book

since the first edition, but this module has changed somewhat over the years so the
“Visual Vignettes” at the end of chapters 1, 2, 5, 7, 9, and 13 have been updated and
somewhat simplified. In particular the discussions of NumPy have been removed ex-
cept for where they are useful for graphing. Appendix D has also been updated with
these changes.

Web-based GUIs: Building Graphic User Interfaces (GUIs) is a topic many students are
interested in. However, in earlier editions we hesitated to focus on GUI development
as part of an introductory text for a number of reasons:

� The extant tkinter is cross platform, but old and more complex to work with than
we would like for an introductory class.

� Getting a modern GUI toolset can be daunting, especially cross platform.
� Just which GUI toolset should we be working with?

A discussion withGregWilson (thanks Greg!) was helpful in resolving this problem. He
suggested doing Web-based GUIs as a modern GUI approach that is cross-platform,
relatively stable and provided in modern distributions like Anaconda.

What that left was the “complexity” issue. We choose to use the package fask

because it was relatively less complex, but more importantly was easily modularized
and could be used in a template fashion to design a GUI.

Thus, we wrote some simple GUI development in fask at the end of chapters 4,
6, 7, 9, 10, and 15. We also wrote a new Appendix E as a tutorial for development of
web-based GUIs.

Functions Earlier: One of the common feedback points we received was a request to
introduce functions earlier. Though we had purposefully done strings first, as a way to
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start working with data, we had sympathy for those instructors who wanted to change
the order and introduce functions before strings. Rather than pick a right way to do this,
we rewrote Chapter 5 so that it had no dependencies Chapter 4, the string chapter.
Instructors are now free to introduce functions anytime after Chapter 2 on control.
Likewise Chapter 4 on strings has no dependencies onChapter 5, the functions chapters.
Thus the instructor can choose the order they prefer.

Online Project Archive: We have established an online archive for Python CS1 projects,
http://www.cse.msu.edu/~cse231/PracticeOfComputingUsingPython/.
These describe various projects we have used over the years in our classes. This
site and its contents has been recognized by the National Center for Women & In-
formation Technology (NCWIT) and was awarded the 2015 NCWIT EngageCSEdu
Engagement Excellence Award.

New Exercises: We added 80 new end-of-chapter exercises.
Other changes: We have made a number of other changes as well:

� We updated Chapter 16 with a discussion about Python Numbers and the various
representations that are available

� We moved the content of some of the chapters in the “Getting Started” part to the
“Data Structures and Functions” part. This is really just a minor change to the
table of contents.

� We fixed various typos and errors that were either pointed out to us or we found
ourselves as we re-read the book.

http://www.cse.msu.edu/~cse231/PracticeOfComputingUsingPython


book PH02031-Punch February 3, 2016 14:59

•P R E F A C E T O T H E
S E C O N D E D I T I O N

Themain driver for a second edition came from requests for Python 3. We began our course
with Python 2 because Python 3 hadn’t been released in 2007 (it was first released in Decem-
ber 2008), and because we worried that it would take some time for important open-source
packages such as NumPy andMatPlotLib to transition to Python 3. WhenNumPy andMat-
PlotLib converted to Python 3 in 2011 we felt comfortable making the transition. Of course,
many other useful modules have also been converted to Python 3—the default installation
now includes thousands of modules. With momentum building behind Python 3 it was time
for us to rewrite our course and this text.

Why Python 3? The Python community decided to break backward compatibility with
Python 3 to fix nagging inconsistencies in the language. One important change was moving
the default character encoding to Unicode which recognizes the world-wide adoption of the
language. In many ways beyond the introductory level, Python 3 is a better language and the
community is making the transition to Python 3.

At the introductory level the transition to Python 3 appears to be relatively small, but
the change resulted in touching nearly every page of the book.

One notable addition was:

� We added a set of nine RULES to guide novice programmers.

We reworked every section of this text—some more than others. We hope that you will
enjoy the changes. Thanks.

B O O K O R G A N I Z AT I O N

At the highest level our text follows a fairly traditional CS1 order, though there are some
diferences. For example, we cover strings rather early (before functions) so that we can do
more data manipulation early on. We also include elementary file I/O early for the same
reason, leaving detailed coverage for a later chapter. Given our theme of data manipulation,

xxix
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we feel this is appropriate. We also “sprinkle” topics like plotting and drawing throughout
the text in service of the data manipulation theme.

We use an “object-use-first” approach where we use built-in Python objects and their
methods early in the book, leaving the design and implementation of user-designed objects
for later. We have found that students are more receptive to building their own classes once
they have experienced the usefulness of Python’s existing objects. In other words, we moti-
vate the need for writing classes. Functions are split into two parts because of how Python
handles mutable objects such as lists as parameters; discussion of those issues can only come
after there is an understanding of lists as mutable objects.

Three of the chapters (3, 10, and 13) are primarily program design chapters, provid-
ing an opportunity to “tie things together,” as well as showing how to design a solution. A
few chapters are intended as supplemental reading material for the students, though lectur-
ers may choose to cover these topics as well. For background, we provide a Chapter 0 that
introduces some general concepts of a computer as a device and some computer terminol-
ogy. We feel such an introduction is important—everyone should understand a little about
a computer, but this material can be left for reading. The last chapters in the text may not
be reached in some courses.

B O O K F E AT U R E S

1.0.1 Data Manipulation
Data manipulation is a theme. The examples range from text analysis to breast cancer classi-
fication. The data.gov site is a wonderful source of interesting and relevant data. Along the
way, we provide some analysis examples using simple graphing. To incorporate drawing and
graphing, we use established packages instead of developing our own: one is built-in (Turtle
graphics); the other is widely used (MatPlotLib with NumPy).

We have tried to focus on non-numeric examples in the book, but some numeric ex-
amples are classics for a good reason. For example, we use a rational numbers example for
creating classes that overload operators. Our goal is always to use the best examples.

1.0.2 Problem Solving and Case Studies
Throughout the text, we emphasize problem solving, especially a divide-and-conquer ap-
proach to developing a solution. Three chapters (3, 10, and 13) are devoted almost exclu-
sively to program development. Here we walk students through the solution of larger ex-
amples. In addition to design, we show mistakes and how to recover from them. That is, we
don’t simply show a solution, but show a process of developing a solution.

1.0.3 Code Examples
There are over 180 code examples in the text—many are brief, but others illustrate piecemeal
development of larger problems.
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1.0.4 Interactive Sessions
The Python interpreter provides a wonderful mechanism for briefly illustrating pro-
gramming and problem-solving concepts. We provide almost 250 interactive sessions for
illustration.

1.0.5 Exercises and Programming Projects
Practice, practice, and more practice. We provide over 275 short exercises for students and
nearly 30 longer programming projects (many with multiple parts).

1.0.6 Self-Test Exercises
Embedded within the chapters are 24 self-check exercises, each with five or more associated
questions.

1.0.7 Programming Tips
We provide over 40 special notes to students on useful tips and things to watch out for.
These tips are boxed for emphasis.

S U P P L E M E N TA R Y M AT E R I A L O N L I N E
� For students
– All example source code
– Data sets used in examples

The above material is freely available at www.pearsonhighered.com/cs-resources/

� For instructors
– PowerPoint slides
– Laboratory exercises
– Figures (PDF) for use in your own slides
– Exercise solutions

Qualified instructors may obtain supplementary material by visiting www.pearsonhighered
.com/irc. Register at the site for access. You may also contact your local Pearson Education
sales representative

W. F. Punch
R. J. Enbody

http://www.pearsonhighered.com/cs-resources
http://www.pearsonhighered.com/irc
http://www.pearsonhighered.com/irc
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The Study of Computer
Science

Composing computer programs to solve scientific problems is like writing
poetry. You must choose every word with care and link it with the other words in
perfect syntax.

James Lovelock

0.1 W H Y C O M P U T E R S C I E N C E ?
It is a fair question to ask. Why should anyone bother to study computer science? Further-
more, what is “computer science”? Isn’t this all just about programming? All good questions.
We think it is worth discussing them before you forge ahead with the rest of the book.

0.1.1 Importance of Computer Science
Let’s be honest. We wouldn’t be writing the book and asking you to spend your valuable time
if we didn’t think that studying computer science is important. There are a couple of ways
to look at why this is true.

First, we all know that computers are everywhere, millions uponmillions of them.What
were once rare, expensive items are as common place as, well, any commodity you can imag-
ine (we were going to say the proverbial toaster, but there are many times more computers
than toasters. In fact, there is likely a small computer in your toaster!). However, that isn’t
enough of a reason. There are millions and millions of cars, and universities don’t require
auto mechanics as an area of study.

Second, Computers are not only common, but they are also more universally applicable
than any other commodity in history. A car is good for transportation, but a computer can

3
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be used in so many situations. In fact, there is almost no area one can imagine where a
computer would not be useful. That is a key attribute. No matter what your area of interest,
a computer could be useful there as a tool. The computer’s universal utility is unique, and
learning how to use such a tool is important.

0.1.2 Computer Science Around You
Computing surrounds you, and it is computer science that put it there. There are a multitude
of examples, but here are a few worth noting.

Social Networking The tools that facilitate social networking such as Facebook or Twitter
are, of course, computer programs. However, the tools that help study the interactions
within social networks involve important computer science fields such as graph theory.
For example, the Iraqi dictator Saddam Hussein was located using the graph theoretic
analysis of his social network.

Smartphones Smartphones are small, very portable computers. Apps for smartphones are
simple computer programs written specifically for smartphones.

Your CarYour car probably hosts dozens of computers. They control the engine, the brakes,
the audio system, the navigation, and the climate control system. They determine if a
crash is occurring and trigger the air bags. Some cars park automatically or apply the
brakes if a crash is imminent. Fully autonomous cars are being tested, as are cars that
talk to each other.

The Internet The backbone of the Internet is a collection of connected computers called
routers that decide the best way to send information to its destination.

0.1.3 Computer “Science”
Any field that has the word science in its name is guaranteed thereby not to be
a science.

Frank Harary

A popular view of the term “computer science” is that it is a glorified way to say “computer
programming.” It is true that computer programming is often the way that people are intro-
duced to computing in general, and that computer programming is the primary reasonmany
take computing courses. However, there is indeed more to computing than programming,
hence the term “computer science.” Here are a few examples.

Theory of Computation
Before there were the vast numbers of computers that are available today, scientists were
thinking about what it means to do computing and what the limits might be. They would
ask questions, such as whether there exist problems that we can conceive of but cannot
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compute. It turns out there are. One of these problems, called the “Halting Problem,”1

cannot be solved by a program running on any computer. Knowing what you can and cannot
solve on a computer is an important issue and a subject of study among computer scientists
that focus on the theory of computation.

Computational Efficiency
The fact that a problem is computable does notmean it is easily computed. Knowing roughly
how difcult a problem is to solve is also very important. Determining ameaningful measure
of difculty is, in itself, an interesting issue, but imagine we are concerned only with time.
Consider designing a solution to a problem that, as part of the solution, required you to sort
100,000 items (say cancer patient records, or asteroid names, or movie episodes, etc.). A slow
algorithm, such as the sorting algorithm called the Bubble Sort, might take approximately
800 seconds (about 13 minutes); another sorting algorithm called Quick Sort might take
approximately 0.3 seconds. That is a diference of around 2400 times! That large a diference
might determine whether it is worth doing. If you are creating a solution, it would be good
to know what makes your solution slow or what makes it fast.

Algorithms and Data Structures
Algorithms and data structures are the currency of the computer scientist. Discussed more
in Chapter 3, algorithms are the methods used to solve problems, whereas data structures
are the organizations of data that the algorithms use. These two concepts are distinct: a
general approach to solving a problem (such as searching for a particular value, sorting a list
of objects and encrypting a message) difers from the organization of the data that is being
processed (as a list of objects, as a dictionary of key-value pairs, as a “tree” of records).
However, they are also tightly coupled. Furthermore, both algorithms and data structures
can be examined independently of how they might be programmed. That is, one designs
algorithms and data structures and then actually implements them in a particular computer
program. Understanding abstractly how to design both algorithms and data structures in-
dependent of the programming language is critical for writing correct and efcient code.

Parallel Processing
It may seem odd to include what many consider an advanced topic, but parallel processing,
using multiple computers to solve a problem, is an issue for everyone these days. Why? As
it turns out, most computers come with at least two processors or CPUs (see Section 0.6),
and many come with four or more. The Playstation4(TM) game console uses a special AMD
chip with a total of eight processors, and Intel has released its new Phi card with more than
60 processors! What does this mean to us, as both consumers and new computer scientists?

1 http://www.wired.com/2014/02/halting-problem/

http://www.wired.com/2014/02/halting-problem
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The answer is that new algorithms, data structures, and programming paradigms will
be needed to take advantage of this new processing environment. Orchestrating many pro-
cessors to solve a problem is an exciting and challenging task.

Software Engineering
Even the process of writing programs itself has developed its own subdiscipline within
computer science. Dubbed “software engineering,” it concerns the process of creating pro-
grams: from designing the algorithms they use, to supporting testing and maintenance of
the program once created. There is even a discipline interested in representing a devel-
oped program as a mathematical entity so that one can prove what a program will do once
written.

Many Others
We have provided but a taste of the many fields that make computer science such a won-
derfully rich area to explore. Every area that uses computation brings its own problems to
be explored.

0.1.4 Computer Science Through Computer Programming
We have tried to make the point that computer science is not just programming. However,
it is also true that for much of the book we will focus on just that aspect of computer
science: programming. Beginning with “problem solving through programming” allows one
to explore pieces of the computer science landscape as they naturally arise.

0.2 T H E D I F F I C U LT Y A N D P R O M I S E
O F P R O G R A M M I N G

If computer science, particularly computer programming, is so interesting, why doesn’t ev-
erybody do it? The truth is that it can be hard. We are often asked by beginning students,
“Why is programming so hard?” Even grizzled programming veterans, when honestly look-
ing back at their first experience, remember how difcult that first programming course was.
Why? Understanding why it might be hard gives you an edge on what you can do to control
the difculty.

0.2.1 Difficulty 1: Two Things at Once
Let’s consider an example. Let us say that, when you walk into that first day of Programming
101, you discover the course is not about programming but French poetry. French poetry?
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Yes, French poetry. Imagine that you come in and the professor posts the following excerpt
from a poem on the board.

A une Damoyselle malade

Ma mignonne,
Je vous donne
Le bon jour;
Le séjour
C’est prison.

Clément Marot

Your assigned task is to translate this poetry into English (or German, or Russian, what-
ever language is your native tongue). Let us also assume, for the moment, that:

(a) You do not know French.
(b) You have never studied poetry.

You have two problems on your hands. First, you have to gain a better understanding
of the syntax and semantics (the form and substance) of the French language. Second, you
need to learn more about the “rules” of poetry and what constitutes a good poem.

Lest you think that this is a trivial matter, an entire book has been written by Douglas
Hofstadter on the very subject of the difculty of translating this one poem (“Le Ton beau
de Marot”).

So what’s your first move? Most people would break out a dictionary and, line by line,
try to translate the poem. Hofstadter, in his book, does exactly that, producing the crude
translation in Figure 0.1.

My Sweet/Cute

[One] (Feminine)

My sweet/cute [one]
(feminine)
I [to] you (respectful)
give/bid/convey
The good day (i.e., a
hello, i.e., greetings).
The stay/sojourn/
visit (i.e., quarantine)
{It} is prison.

A une Damoyselle malade

Ma mignonne,
Je vous donne
Le bon jour;
Le séjour
C’est prison.

FIGURE 0.1 Crude translation of excerpt.
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The result is hardly a testament to beautiful poetry. This translation does capture the
syntax and semantics, but not the poetry, of the original. If we take a closer look at the poem,
we can discern some features that a good translation should incorporate. For example:

� Each line consists of three syllables.
� Each line’s main stress falls on its final syllable.
� The poem is a string of rhyming couplets: AA, BB, CC, …
� The semantic couplets are out of phase with the rhyming couplets: A, AB, BC, …

Taking some of these ideas (and many more) into account, Hofstadter comes up with
the translation in Figure 0.2.

My Sweet Dear

My sweet dear,
I send cheer –
All the best!
Your forced rest
Is like jail.

A une Damoyselle malade

Ma mignonne,
Je vous donne
Le bon jour;
Le séjour
C’est prison.

FIGURE 0.2 Improved translation of excerpt.

Not only does this version sound far more like poetry, but it also matches the original
poem, following the rules and conveying the intent. It is a pretty good translation!

Poetry to Programming?
How does this poetry example help? Actually, the analogy is pretty strong. In coming to
programming for the first time, you face exactly the same issues:

� You are not yet familiar with the syntax and semantics of the language you are work-
ing with—in this case, of the programming language Python and perhaps not of any

programming language.
� You do not know how to solve problems using a computer—similar to not knowing
how to write poetry.

Just like the French poetry neophyte, you are trying to solve two problems simultane-
ously. On one level, you are just trying to get familiar with the syntax and semantics of the
language. At the same time, you are tackling a second, very difcult task: creating poetry in
the previous example and solving problems using a computer in this course.

Working at two levels, the meaning of the programming words and then the intent
of the program (what the program is trying to solve) are the two problems the beginning
programmer has to face. Just like the French poetry neophyte, your first programs will be
a bit clumsy as you learn both the programming language and how to use that language to
solve problems. For example, to a practiced eye, many first programs look similar in nature
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to the literal translation of Hofstadter’s in Figure 0.1. Trying to do two things simultaneously
is difcult for anyone, so be gentle on yourself as you go forward with the process.

You might ask whether there is a better way. Perhaps, but we have not found it yet. The
way to learn programming is to program, just like swinging a baseball bat, playing the piano,
and winning at bridge; you can hear the rules and talk about the strategies, but learning is
best done by doing.

0.2.2 Difficulty 2: What Is a Good Program?
Having mastered some of the syntax and semantics of a programming language, how do
we write a good program? That is, how do we create a program that is more like poetry than
like the mess arrived at through literal translation?

It is difcult to discuss a good program when, at this point, you know so little, but there
are a couple of points that are worth noting even before we get started.

It’s All About Problem Solving
If the rules of poetry are what guides writing good poetry, what are the guidelines for writing
good programs? That is, what is it we have to learn in order to transition from a literal
translation to a good poem?

For programming, it is problem solving. When you write a program, you are creating, in
some detail, how it is that you think a particular problem or some class of problems, should
be solved. Thus, the program represents, in a very accessible way, your thoughts on prob-
lem solving. Your thoughts! That means, before you write the program you must have some
thoughts.

It is a common practice, even among veteran programmers, to get a problem and
immediately sit down and start writing a program. Typically that approach results in a mess,
and, for the beginning programmer, it results in an unsolved problem. Figuring out how to solve
a problem requires some initial thought. If you think before you program, you better understand
what the problem requires as well as the best strategies you might use to solve that problem.

Remember the two-level problem? Writing a program as you figure out how to solve
a problem means that you are working at two levels at once: the problem-solving level and
the programming level. That is more difcult than doing things sequentially. You should sit
down and think about the problem and how you want to solve it before you start writing the
program. We will talk more about this later, but rule 1 is:

Rule 1: Think before you program!

A Program as an Essay
When students are asked “What is the most important feature a program should have?”
many answer, “It should run.” By “run,” they mean that the program executes and actually
does something.




